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Abstract—The design and implementation of full-order controllers 
often requires advanced hardware and high computational 
processing effort mainly for problems that involves large models. The 
advanced controller designs methods like LQG/LTR or H-infinity 
based synthesis methods leads to controllers of order comparable to 
the plant and sometimes unstable controller whereas lower order 
controller should be sought out to keep the closed-loop stability and 
system performance within acceptable limit. To avoid this, it is 
recommended to use reduced order controllers. Here we take an 
unstable controller and reduce the controller using optimal hankel 
norm approximation and then optimized the results using Particle 
Swarm Optimization (PSO).  
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1. I NT R ODUC T I ON 

Minimization of H-infinity norm is one of the criteria in 
controller reduction for active vibrations, which consists of 
peak frequency response attenuation of the controlled system, 
while maintaining stability. The development of the optimal 
hankel norm approximation [1, 2] and the balanced truncation 
[3] changed the perception of model reduction significantly. 
By applying these two techniques we can ensure that the 
reduced order controller will almost have the same 
characteristics as the original one and we can also ensure 
stability of the system.Admajan et al. [4 introduced a closed 
form optimal [4] to model reductions with respect to hankel 
norm criterion for SISO systems. This technique was first 
applied on MIMO systems by Kung [2] who also mentioned 
the relevance of model reduction.To derive explicit algorithms 
and simple expressions for the Hankel norm approximation of 
a high dimensional discrete-time stable scalar system by a 
reduced model of any low order,the structure of linear 
dynamical systems with finite dimension is exploited in [6]. 
Bay et al [7] solved the case of continuous-time scalar, in 
addition to that Glover [1] investigated characterization of all 
optimal Hankel norm approximations that minimize the 
Hankel norm for multivariable linear systems and derived the 
frequency response error bound  

In this paper a controller reduction algorithm with frequency 
weightings based on optimal Hankel norm approximation 
(OHNA) technique is discussed.  

2. PR OB L E M  F OR M UL A T I ON 

When reduced order controller replaces the full order 
controllerwe emphasize on the reduced order controller that it 
approximates the closed loop system and does not violates any 
closed loop objectives. Taking note of these objectives, we 
also introduced a frequency weighting selection scheme is 
considered in conjunction with the controller reduction 
algorithm via OHNA algorithm. The stability or performance 
using weights is scrutinized in [12], [18]. To guarantee the 
closed-loop stability the frequency weighted balancing related 
approaches can be applied to controller reduction problems by 
preserving the H-infinity performance bound which were 
achieved by using the original controller. 

 
F ig. 1:  G ener alizedplantandcontroller  interconnection 

Consider a generalized two port plant and controller 
configuration as shown in Fig. 1 with transfer function matrix 
G(s), high order controller K(s), reduced order controller 
Kr(s), external input w, controlled output z, control input u and 
measured output y. The closed loop transfer function Tzw(s) 
which is the T.F. matrix from w(s) to z(s) with the controller 
K(s) connected to the plant G(s) is given by lower linear 
fractional transformation (LFT) of G(s) and K(s) [15], [19]. 
The plant G, full order controller K and reduced order 
controller Kr are given by 
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𝐺𝐺 = 𝐺𝐺11 𝐺𝐺12
𝐺𝐺21 𝐺𝐺22

=  
𝐴𝐴 𝐵𝐵1 𝐵𝐵2
𝐶𝐶1 𝐷𝐷11 𝐷𝐷12
𝐶𝐶2 𝐷𝐷21 𝐷𝐷22

  (1) 

𝐾𝐾 =  �𝐴𝐴 𝐵𝐵
𝐶𝐶 𝐷𝐷�  (2) 

𝐾𝐾𝑟𝑟 = �𝐴𝐴𝑟𝑟 𝐵𝐵𝑟𝑟
𝐶𝐶𝑟𝑟 𝐷𝐷𝑟𝑟

�  (3) 

Then the Closed-loop transfer function with full order 
controller K(s) and reduced order controller Kr(s) are given by 

𝑇𝑇𝑧𝑧𝑧𝑧 (𝑠𝑠) = 𝐹𝐹1(𝐺𝐺,𝐾𝐾) = 𝐺𝐺11 + 𝐺𝐺12𝐾𝐾(1 − 𝐺𝐺22𝐾𝐾)−1𝐺𝐺21 (4) 

𝑇𝑇𝑧𝑧𝑧𝑧 (𝑠𝑠) = 𝐹𝐹1(𝐺𝐺,𝐾𝐾𝑟𝑟) = 𝐺𝐺11 + 𝐺𝐺12𝐾𝐾𝑟𝑟(1 − 𝐺𝐺22𝐾𝐾𝑟𝑟)−1𝐺𝐺21 (5) 

Minimizing ‖𝑇𝑇𝑧𝑧𝑧𝑧 (𝑠𝑠) − 𝑇𝑇𝑧𝑧𝑧𝑧 (𝑠𝑠)‖ results in the optimal solution 
[15] which sometimes may not be achieved, so we compute a 
stabilizing reduced order controller Kr

3. UNST A B L E C ONT R OL L E R  DE C OM POSI T I ON 
A L G OR I T H M  

(s) such that ‖𝑇𝑇𝑧𝑧𝑧𝑧 (𝑠𝑠) −
𝑇𝑇𝑧𝑧𝑧𝑧(𝑠𝑠)< γ where γ is a positive constant.  

The system decomposition algorithm [20] is adopted for 
decomposition of unstable controllers. It contains two stages 
of transformations. In first stage the block form of real Schur 
transformation is used whereas in second stage of 
transformation, the generalized Lyapunov equation has been 
solved for obtaining decomposed stable and unstable 
subsystems. The decomposition algorithm consists of 
following steps: 

Step 1: The unstable controller K is transformed into block 
diagonal upper Schur form using an unitary matrix U. If x 
denotes the states of unstable controller then the first stage 
transformation matrix U (the unitary matrix) and the 
transformed system states xt may be related as x = U xt

 

 Thus, 
the first stage transformed system becomes, 

 
Where n denotes order of the system, m denotes the number of 
stable eigenvalues and n-m denotes the number of unstable 
Eigen values. 

Step 2: The transformed system of step (1), contains a 
coupling term At12. To bring transformed system into 

completely decoupled form, the general form of Lyapunov 
equation is used. 

𝐴𝐴𝑡𝑡11𝑆𝑆 − 𝑆𝑆𝐴𝐴𝑡𝑡22 + 𝐴𝐴𝑡𝑡12 = 0 (7) 

The value of S is obtained and second stage of transformation 
is carried out using xt= WX where X is the final stage 
transformed state and W is the final stage transformation 
matrix. The second stage transformation matrix W is given as 

W = �𝐼𝐼𝑚𝑚 𝑆𝑆
0 𝐼𝐼𝑛𝑛−𝑚𝑚

�   (8) 

The important property of W is that W-1can be obtained simply 
by replacing S with –S. i.e. 

𝑊𝑊−1 = �𝐼𝐼𝑚𝑚 −𝑆𝑆
0 𝐼𝐼𝑛𝑛−𝑚𝑚

� (9) 

Using W, the completely decoupled system (Kd) is obtained 
as, 

𝐾𝐾𝑑𝑑 = �𝑊𝑊 − 1 𝐴𝐴𝑡𝑡𝑊𝑊 𝑊𝑊−1𝐵𝐵𝑡𝑡
𝐶𝐶𝑡𝑡𝑊𝑊 𝐷𝐷 � 

𝐾𝐾𝑑𝑑 = �
𝐴𝐴𝑘𝑘11 0 𝐵𝐵1

0 𝐴𝐴𝑘𝑘22 𝐵𝐵2
𝐶𝐶1 𝐶𝐶2 𝐷𝐷

�  (10) 

This transformed model may be decomposed into stable and 
unstable as 

𝐾𝐾𝑑𝑑 = �𝐴𝐴𝑘𝑘11 𝐵𝐵𝑘𝑘1
𝐶𝐶𝑘𝑘1 𝐷𝐷 � + �𝐴𝐴𝑘𝑘22 𝐵𝐵𝑘𝑘2

𝐶𝐶𝑘𝑘2 0 �  (11) 

= KS (stable part) + KU

4. F R E QUE NC Y  W E I G H T E D C ONT R OL L E R  
R E DUC T I ON B Y  OPT I M A L  H A NK E L  NOR M  
A PPR OX I M A T I ON 

 (unstable part) 

Step 1:  C hoice of weightings 

Choose the weighting T.Fs. according to one of the following 
criterion [18]: 

(i) To enforce closed loop stability, single-sided weightings of 
the following form can be chosen 

Either 𝑊𝑊𝑖𝑖 = 𝐼𝐼 𝑎𝑎𝑛𝑛𝑑𝑑 𝑊𝑊𝑜𝑜 = (𝐼𝐼 + 𝐺𝐺𝐾𝐾)−1𝐺𝐺   (12) 

Or,𝑊𝑊𝑖𝑖 = (𝐼𝐼 = 𝐺𝐺𝐾𝐾)−1 𝑎𝑎𝑛𝑛𝑑𝑑 𝑊𝑊𝑜𝑜 = (𝐼𝐼 + 𝐺𝐺𝐾𝐾)−1𝐺𝐺   (13) 

Step 2: Determination of Gramians 

Let the input and output weightings with the following 
minimal realization [19] 

𝑊𝑊𝑖𝑖 = �𝐴𝐴𝑖𝑖 𝐵𝐵𝑖𝑖
𝐶𝐶𝑖𝑖 𝐷𝐷𝑖𝑖

�  𝑎𝑎𝑛𝑛𝑑𝑑 𝑊𝑊𝑜𝑜 �
𝐴𝐴𝑜𝑜 𝐵𝐵𝑜𝑜
𝐶𝐶𝑜𝑜 𝐷𝐷𝑜𝑜

�  (14) 

Let the Gramians are of the following form 
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𝑃𝑃𝑎𝑎𝑖𝑖 = �
𝑃𝑃11 𝑃𝑃12
𝑃𝑃12
𝑇𝑇 𝑃𝑃22

�  𝑎𝑎𝑛𝑛𝑑𝑑 𝑄𝑄𝑎𝑎𝑜𝑜 = �
𝑄𝑄11 𝑄𝑄12
𝑄𝑄12
𝑇𝑇 𝑄𝑄22

�  (15) 

Step 3: Determination of Hankel Singular values 

Hankel Singular values (HSV) of the system are obtained by 
simultaneously diagonalization of weighted Gramians P and 
Q. 

𝑇𝑇𝑃𝑃𝑒𝑒𝑇𝑇𝑇𝑇 = (𝑇𝑇−1)𝑇𝑇𝑄𝑄𝑒𝑒𝑇𝑇−1 = Σ   (16) 

= 𝑑𝑑𝑖𝑖𝑎𝑎𝑑𝑑(𝜎𝜎1𝜎𝜎2, … … . . . ,𝜎𝜎𝑘𝑘𝜎𝜎𝑘𝑘+1, … . . … . ,𝜎𝜎𝑚𝑚) 

Then, Gramians [16] become 

Σ = � Σ
�

𝜎𝜎𝑟𝑟+1𝐼𝐼𝑙𝑙
�  (17) 

Step 4: Now for finding similarity transformation matrices SL 
and SR

Singular value decomposition of E is obtained such that 

𝐸𝐸 = 𝑈𝑈𝐸𝐸Σ𝐸𝐸𝑉𝑉𝐸𝐸′  (19) 

 Let, 

𝑉𝑉𝑅𝑅 = 𝑈𝑈𝑃𝑃�Σ𝑃𝑃 ,𝑉𝑉𝐿𝐿 = 𝑈𝑈𝑞𝑞�Σ𝑞𝑞 ,𝐸𝐸 = 𝑉𝑉𝐿𝐿′𝑉𝑉𝑅𝑅  (18) 

To compute similarity transformation matrices SL and SRfor 
balanced realized model of the non-minimal system the 
elements of Ʃ E

Finally the transformation matrices are obtained as 

𝑆𝑆𝐿𝐿 = 𝑉𝑉𝐿𝐿𝑈𝑈𝐸𝐸(Σ𝑡𝑡𝑟𝑟𝑡𝑡𝑛𝑛𝑡𝑡 )−1/2 

 is truncated beyond minimal order k of the 
controller as 

Σ𝑡𝑡𝑟𝑟𝑡𝑡𝑛𝑛𝑡𝑡 = Σ𝐸𝐸(1:𝑘𝑘, 1: 𝑘𝑘) (20) 

𝑆𝑆𝑅𝑅 = 𝑉𝑉𝑅𝑅𝑉𝑉𝐸𝐸(Σ𝑡𝑡𝑟𝑟𝑡𝑡𝑛𝑛𝑡𝑡 )−1/2   (21) 

Step7: Obtain HNA model 

The minimal balanced realized model is partitioned according 
to the partition of the Gramians as 

𝐴𝐴𝑏𝑏𝑎𝑎𝑙𝑙 = �𝐴𝐴11 𝐴𝐴12
𝐴𝐴21 𝐴𝐴22

� ,𝐵𝐵𝑏𝑏𝑎𝑎𝑙𝑙 = �𝐵𝐵1
𝐵𝐵2
� ,𝐶𝐶𝑏𝑏𝑎𝑎𝑙𝑙 = [𝐶𝐶1 𝐶𝐶2] 

Step 8: The overall reduced order controller is obtained by 
adding the reduced model computed in step 7 and the 
decomposed unstable part of original controller as 

𝐾𝐾𝑜𝑜ℎ𝑛𝑛𝑎𝑎 = 𝐾𝐾𝑠𝑠𝑟𝑟_ℎ𝑛𝑛𝑎𝑎 + 𝐾𝐾𝑈𝑈  (22) 

5. PAR T I C L E  SW A R M  OPT I M I ZA T I ON 

Swarming strategies in bird flocking and fish schooling are 
used in PSO introduced by Eberhart and Kennedy. Each 
Particle in the swarm is represented by the following 
characteristics:- 

1. The current position of the particle 

2. The current velocity of the particle 

 
F ig. 2:  C oncept of modification of a searching point by PSO 

6. I L L UST R A T I V E  E X A M PL E  

Consider the generalized 3rd

For the above plant Zhou [19] has discussed the 2 H norm 
based controller and its reduction but here ∞ H based full 
order suboptimal controller reduction has been considered. For 
the above 3rd order plant, ∞ H based full order suboptimal 
controller K (s) at suboptimum value γ = 0.4493, is obtained 
as 

𝐾𝐾 =
−30738 ∗ 10^11(𝑠𝑠 + 3)(𝑠𝑠 + 1)

(𝑠𝑠 + 6.838 ∗ 10^11)(𝑠𝑠 + 3.282)(𝑠𝑠 − 0.1815)
 

 order stable plant [19] with 
following parameters for H-infinitybased controller reduction 

𝐺𝐺 = �
𝐴𝐴 𝐵𝐵1 𝐵𝐵2
𝐶𝐶1 𝐷𝐷11 𝐷𝐷12
𝐶𝐶2 𝐷𝐷21 𝐷𝐷22

� =

⎣
⎢
⎢
⎢
⎢
⎡
−1 0 4
0 −2 0
0 0 −3

0 0 1
1 0 1
0 0 1

0 1 0
0 0 0
1 1 1

0 0 0
0 0 1
0 1 0⎦

⎥
⎥
⎥
⎥
⎤

 

The above controller is unstable, for reduction of this 
controller we decompose it into stable part KS and unstable 
part KU

Now the reduced controller is 

, then by using algorithm which we discussed reduce 
the stable part 

𝐾𝐾𝑠𝑠 =
−3.0738 ∗ 10^11(𝑠𝑠 + 3.096)

(𝑠𝑠 + 3.282)(𝑠𝑠 + 6.838 ∗ 10^11)
 

𝐾𝐾𝑈𝑈 =
−0.48787

(𝑠𝑠 − 0.1815)
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𝐾𝐾𝑟𝑟𝑒𝑒𝑑𝑑 =
−3.0738 ∗ 10^11(𝑠𝑠 + 0.9038)

(𝑠𝑠 + 6.6838 ∗ 10^11)(𝑠𝑠 − 0.1815)
 

This reduced controller is optimized by PSO and obtained as 

𝐾𝐾𝑛𝑛𝑒𝑒𝑧𝑧 =
−3.6454 ∗ 10^11(𝑠𝑠 + 0.8121)

(𝑠𝑠 + 8.421 ∗ 10^11)(𝑠𝑠 − 0.1823)
 

The step responses and singular value plots for closed-loop 
systems with original, reduced order controller and PSO 
optimized controllerare shown in Figurerespectively. 

 

F ig. 3:  Step response of different controller  

7. C ONC L SI ON 

As we can see that the controller which is designed by optimal 
hankel norm approximation exhibits and approximates the 
closed loop performance of the controller which is original 
designed. The results after optimizing the results further 
improves. 
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